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It is shown that, for kernel-based classification with univariate distrib-
utions and two populations, optimal bandwidth choice has a dichotomous
character. If the two densities cross at just one point, where their curvatures
have the same signs, then minimum Bayes risk is achieved using bandwidths
which are an order of magnitude larger than those which minimize pointwise
estimation error. On the other hand, if the curvature signs are different, or if
there are multiple crossing points, then bandwidths of conventional size are
generally appropriate. The range of different modes of behavior is narrower
in multivariate settings. There, the optimal size of bandwidth is generally the
same as that which is appropriate for pointwise density estimation. These
properties motivate empirical rules for bandwidth choice.

1. Introduction.

1.1. Motivation and main results. A common approach to nonparametric
classification based on data from training samples is to construct nonparametric
estimators of population densities and substitute them for the true densities in
a theoretically optimal algorithm for minimizing Bayes risk. Not only is this
approach intuitively appealing and operationally straightforward, it is optimal in
a minimax sense, as argued by Marron (1983). However, it is unclear how one
might select a bandwidth that minimizes risk. In particular, we might ask from a
theoretical viewpoint what relationship exists between the sizes of bandwidth that
are appropriate for pointwise density estimation and for optimal classification. And
even if we understand this connection, and have a theoretically optimal formula for
bandwidth, how might we go about constructing empirical approximations to it?

In this note we briefly summarize how bandwidth choice influences classifi-
cation error, and suggest ways of choosing bandwidth to minimize that error.
In particular, we show that when only two populations are involved, when the
populations are univariate, and when the densities intersect at a single point, the
following dichotomous result arises. If the density curvatures are of different signs
at the crossing point, then minimum Bayes risk is achieved using bandwidths that
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are of the same sizes as those which minimize pointwise estimation error. On the
other hand, if the curvatures are of the same sign, then quite different bandwidth
sizes, in fact, similar to those that would be employed if the kernel was of fourth
(rather than second) order, are appropriate. Furthermore, if there is more than one
crossing point, then, generally speaking, the first of these two sizes of bandwidth
applies.

Ironically, the problem actually becomes simpler in more complex settings,
where the classification problem involves multivariate data. There, it is generally
the case that the optimal size of bandwidth (in the sense of minimizing Bayes risk)
is the same as that which would be used if we were constructing pointwise density
estimators.

The problem of empirical bandwidth choice suffers from unexpected diffi-
culties. It might reasonably be thought that leave-one-out methods, which have
been so successful in related problems of nonparametric inference [see, e.g., Hall
(1983), Stone (1984), Härdle and Kelly (1987) and Györfi, Kohler, Krzy˙zak and
Walk (2002)], would perform well in this setting. For example, one could com-
pute the estimate of classification error when a given datumX was omitted from
the sample, evaluate the estimate atX, and then average over all values ofX in
order to obtain an estimate of classification error that could be minimized with
respect to bandwidth. However, we shall show that this generally gives poor per-
formance. The reason is that it depends on properties of density estimators at the
relatively small number of places where the true densities cross, and the leave-
one-out approach described above does not give consistent estimates of error at
individual points such asx; it is necessary to average over a continuum of points
in the neighborhood ofx. The extra degree of smoothing required by this step
complicates inference, with the result that alternative approaches are relatively at-
tractive.

1.2. Relationship to literature. The extensive literature on this topic includes
results which, at first sight, might appear to be contradictory. For example, it is
known that, while there exists a class of universally consistent classifiers [see,
e.g., Lugosi and Nobel (1996)], the convergence rate of any classifier can be
arbitrarily slow [Devroye, Györfi and Lugosi (1996), Chapter 7 and Yang (1999a)].
Indeed, arbitrarily slow rates can apply even for smooth densities [Devroye
(1982)]. Moreover, while for large classes of densities (e.g., monotone ones) the
rate of convergence of the risk for classification is strictly faster than that for
estimation, the two problems are, in fact, of the same difficulty in a well-defined
sense [Yang (1999a)]. Also, although the risk of members of a popular class of
classifiers converges to its asymptotic limit at raten−2, wheren denotes sample
size [Cover (1968)], that for classifiers based on empirical forms of Bayes risk
converges no more quickly thann−1, even in parametric settings [e.g., Kharin and
Ducinskas (1979)]. If Bayes risk-based classifiers use kernel estimators, or related
nonparametric methods based on places where densities cross, then they converge
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at slower rates thann−1, which are nevertheless minimax-optimal [e.g., Marron
(1983) and Mammen and Tsybakov (1999)].

Such contrasts, particularly those between results of Lugosi and Nobel (1996)
and Devroye, Györfi and Lugosi (1996), or among the convergence-rate results
noted by Yang (1999a), are particularly engaging, but, of course, do not amount
to contradictions. Differences among minimax results can be accommodated by
noting that the classes over which the “max” part of “minimax” is taken are not
identical. There is no real conflict between the results of Cover (1968) and those for
Bayes risk-based methods, since the limiting risk of the nearest-neighbor methods
treated by Cover is (except in degenerate cases) strictly greater than the Bayes risk,
and so the fast convergence rate does not imply good performance.

Work in the present paper relates to kernel-based methods for classification,
which date from contributions of Fix and Hodges (1951). It is less closely
connected to classification problems involving very high-dimensional data; for the
latter setting, see, for example, Breiman (1998, 2001), Schapire, Freund, Bartlett
and Lee (1998), Friedman, Hastie and Tibshirani (2000), Kim and Loh (2001),
Dudoit, Fridlyand and Speed (2002) and Jiang (2002). Although there is some
evidence that multiplicative bias/variance decompositions play an important role
in such contexts, considerable interest still resides in additive decompositions of
the type addressed in the results we shall discuss. For example, in a wide-ranging
contribution to classification problems for multivariate (and, in particular, high-
dimensional) data, Friedman [(1997), Section 11] draws particular attention to the
role of additive decompositions in classification problems.

In addition to the work discussed above, there is an extensive literature on
nonparametric methods for classification, much of it based on using an empirical
version of the Bayes-optimal rule. Fukunaga and Hummels (1987) and Psaltis,
Snapp and Venkatesh (1994) extend Cover’s (1968) work tod dimensions, where
the classification error of nearest-neighbor methods converges at raten−2/d .
Efron (1983) and Efron and Tibshirani (1997) discuss the performance of
bootstrap-based estimators of error rate for general classification methods. Chanda
and Ruymgaart (1989) address kernel-based classification rules when the two
distributions differ only in location, and where tails decrease exponentially fast
or in a regularly varying manner. See also Kharin (1983), who gives related results
in multivariate settings, and Devroye, Györfi and Lugosi [(1996), Theorem 6.6],
who provide an elegant upper bound. Krzy˙zak (1991) derives bounds on Bayes
probability of error for kernel-based classification rules; Lapko (1993) gives
a book-length account, in Russian, of nonparametric classification, including
techniques based on nonparametric density estimation; Pawlak (1993) proposes
kernel-based classification rules for use with incomplete data; Lugosi and Pawlak
(1994) describe properties of a posterior-probability estimator of classification
error for nonparametric classifiers; Ancukiewicz (1998) introduces class-based
classification rules founded on nonparametric density estimators; Yang (1999b)
studies nonparametric estimation of conditional probability for classification; Baek
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and Sung (2000) introduce a nearest-neighbour search algorithm for nonparametric
classification; Steele and Patterson (2000) give formulae for exact calculation of
bootstrap estimates of expected prediction error for nearest-neighbor classifiers;
and Lin (2001) suggests a nonparametric classification rule for univariate data,
based on the minimum Kolmogorov distance between two populations.

1.3. Summary. Section 2 presents our main results in the univariate, two-
population case, where at least one of the densities is not close to zero. Section 3
suggests ways of removing the latter constraint; Section 4 treats empirical choice
of bandwidth; Section 5 addresses generalizations to multiple and multivariate
populations; and Section 6 outlines numerical properties. For the sake of brevity,
most proofs are omitted, being available in a longer version of the paper, available
online [Hall and Kang (2002)]. However, a brief account of the reasons for failure
of leave-one-out methods is given in Section 7.

2. Classifying data from the body of a distribution: two-population case.

2.1. Kernel-based classifiers. Let the two populations have distributions
F and G, with respective densitiesf and g. Let 0 < p < 1 reflect the prior
probability that a new, unclassified datum,x say, lying in a given intervalI,
is drawn fromF . (To avoid degeneracy we assume throughout that 0< p < 1.)
Denote byA0 the “ideal” algorithm that classifiesx as coming fromF or G

according as�(x) ≡ pf (x)−(1−p)g(x) is positive or negative, respectively. [We
may make the classification arbitrarily if�(x) vanishes.] Among all measurable
algorithmsA for classification onI, A0 is optimal in the sense of minimizing the
Bayes risk

errA(f, g|I)

= p

∫
I
P(x is classified byA as coming fromg)f (x) dx

+ (1− p)

∫
I
P(x is classified byA as coming fromf )g(x) dx.

(2.1)

Optimality requires that prior probabilities forF and G, restricted toI, be
precisely p and 1− p, respectively, although this assumption will not be a
prerequisite for our main theoretical results.

Given training datasetsX = {X1, . . . ,Xm} andY = {Y1, . . . , Yn} drawn from
F andG, respectively, an empirical version ofA0 may be based on nonparametric
density estimators,̂f and ĝ say, computed fromX andY. Specifically, given a
nonnegative kernelK and bandwidthsh1, h2 > 0, let

f̂ (x) = 1

mh1

m∑
i=1

K

(
x − Xi

h1

)
, ĝ(x) = 1

nh2

n∑
i=1

K

(
x − Yi

h2

)
,(2.2)
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and letA1 be the rule that classifiesx as coming fromF or G, according as
�̂(x) ≡ pf̂ (x) − (1− p)ĝ(x) is positive or negative, respectively.

Classification can be made arbitrarily if̂�(x) = 0. However, in this case a
distinction should be drawn between cases where at least one off̂ (x) and ĝ(x)

is nonzero and wherêf (x) andĝ(x) both vanish. In the latter setting classification
can be more prone to error. An alternative algorithm, not employing arbitrary
choice, will be suggested in Section 3.

2.2. Main results. We shall assume the following:

m/n is bounded away from zero and infinity asn → ∞;(2.3)

f andg have two continuous derivatives and are bounded away from
(2.4)

zero in an open interval containingI;
� vanishes at justν ≥ 1 points,y1, . . . , yν , in I, all of them interior points

(2.5)
and at each of which�′(yj ) �= 0;
K is a bounded, symmetric and compactly supported probability density;(2.6)

for j = 1 and 2,hj = hj (n) � n−ρ asn → ∞, where 0< ρ < 1.(2.7)

The notationa(n) � b(n) means that the ratio of left- and right-hand sides is
bounded away from zero and infinity asn → ∞. The equivalence of bandwidth
sizes which (2.7) entails is not strictly necessary, but since optimal bandwidths
satisfy (2.7), then it is imposed without loss of generality. Puth = n−ρ , whereρ is
as in (2.7).

Our proof of Theorem 2.1, stated below, needs only two (or four, in the
case of the second half of the theorem) continuous derivatives off and g in
neighborhoods of a cross-over point, together with continuity off andg in an
open intervalIop containingI, as asked by (2.4). However, (2.4) is a standard
condition when analyzing performance of second-order density estimators, and
two bounded derivatives are required for the minimax results of Marron (1983).

THEOREM 2.1. Assume 0 < p < 1 and I is a compact interval, and that
(2.3)–(2.7)hold. Then,

errA1(f, g|I) − errA0(f, g|I)

= 1
2

ν∑
j=1

|�′(yj )|−1E{pf̂ (yj ) − (1− p)ĝ(yj )}2 + o{(nh)−1 + h4}.(2.8)

If in addition ν = 1, f ′′(y1)g
′′(y1) > 0,

h2

h1
=

{
pf ′′(y1)

(1− p)g′′(y1)

}1/2

+ o(h2),(2.9)

and f and g each have four continuous derivatives in a neighborhood of y1,
then (2.8) continues to hold if the remainder there is replaced by o{(nh)−1 + h8}.
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Chanda and Ruymgaart (1989) give a version of (2.8) in cases whereg differs
from f only in location, and tails are controlled by specific decay assumptions.
Result (2.8) is specific to kernel-based Bayes classifiers. Indeed, as we noted in
Section 1.2, Cover (1968) has shown that much faster rates are possible for nearest-
neighbor classifiers, for which the asymptotic risk usually dominates the Bayes risk
errA0(f, g|I).

An alternative algorithm is that suggested by Stoller (1954), and involves
classifying a new data valuex as coming fromf if x ≤ argmax(mF̂ − nĜ),
whereF̂ andĜ are the empirical distribution functions computed fromX andY,
respectively. Here the classification probability, for data inI, converges to
errA0(f, g|I), but only at rateOp(n−1/2).

2.3. Implications of Theorem 2.1. The expansion at (2.8) may be refined to

errA1(f, g|I) − errA0(f, g|I) = B1(nh)−1 + B2h
4 + o{(nh)−1 + h4},(2.10)

whereB1 andB2 are both functions ofH1 = h1/h andH2 = h2/h, and, explicitly,

B1 = 1
2κ

ν∑
j=1

|�′(yj )|−1{(rH1)
−1p2f (yj ) + H−1

2 (1− p)2g(yj )},

B2 = 1
8κ2

2

ν∑
j=1

|�′(yj )|−1{H 2
1pf ′′(yj ) − H 2

2 (1− p)g′′(yj )}2,

(2.11)

with κ = ∫
K2, κj = ∫

ujK(u)du and r = m/n. Result (2.10) implies that the
optimal bandwidth is of sizen−1/5 (i.e., ρ = 1/5), and that optimal values of the
constantsH1 andH2 are obtained by minimizingB1 + B2, unless it should be
possible to renderB2 = 0 by some positive, nonzero choice ofH1 andH2.

If ν = 1, thenB2 = 0 is possible (for positiveH1 andH2) if and only if f ′′(y1)

andg′′(y1) are of the same sign; that is, the densities at the pointy1 wherepf and
(1 − p)g cross are either both locally concave or both locally convex. Assuming
this to be the case, and choosingh1 andh2 as at (2.9), we may show from (2.8)
(with h8 instead ofh4 in the remainder) that, instead of (2.10),

errA1(f, g|I) − errA0(f, g|I) = B3(nh)−1 + B4h
8 + o{(nh)−1 + h8},(2.12)

where, definingR = pf ′′(y1)/(1− p)g′′(y1), we have

B3 = κ

2H1
|�′(y1)|−1{r−1p2f (y1) + R−1/2(1− p)2g(y1)},

B4 = κ2
4H 8

1

1152
|�′(y1)|−1{pf (4)(y1) − R2(1− p)g(4)(y1)

}2
.

(2.13)

Result (2.12) implies that the optimal bandwidth is now of sizen−1/9 (i.e.,
ρ = 1/9), and that the optimal constantH1 is obtained by minimizingB3 + B4.
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There is, of course, a possibility that the factorT (f, g) ≡ pf (4)(y1) − R2(1 −
p)g(4)(y1) appearing in the definition ofB4 vanishes. In this case the term
in B4h

8 at (2.12) should be replaced by one inh12, and the remainder replaced
by o{(nh)−1 + h12}, providedf andg have continuous derivatives of order 6 in
a neighborhood ofy1. However, sinceT (f, g) is a particularly unusual functional
of second and fourth derivatives of two distinct densities, then it is unlikely that in
practiceT (f, g) = 0.

In summary, excepting pathological cases that can be expected to arise only
rarely, the optimal bandwidths for classification whenν ≥ 2 areh0

j = Hjn
−1/5,

whereH1,H2 > 0 are chosen to minimize
ν∑

j=1

|�′(yj )|−1[κ{(rH1)
−1p2f (yj ) + H−1

2 (1− p)2g(yj )}

+ 1
4κ2

2{H 2
1pf ′′(yj ) − H 2

2 (1− p)g′′(yj )}2].
(2.14)

If f ′′(y1)g
′′(y1) < 0, then this prescription is also valid forν = 1. How-

ever, if ν = 1 andf ′′(y1)g
′′(y1) > 0, then, excepting pathological cases where

T (f, g) = 0, the optimal bandwidths areh0
1 = H1n

−1/9 and h0
2 = H2n

−1/9 =
H1R

1/2n−1/9, whereH1 > 0 minimizes
κ

H1
{r−1p2f (y1) + R−1/2(1− p)2g(y1)}

+ κ2
4H 8

1

576

{
pf (4)(y1) − R2(1− p)g(4)(y1)

}2
.

(2.15)

An extreme case is that where� is smooth and vanishes over a “plate,” that
is, a nondegenerate intervalJ = [a, b]. Then, each derivative of� which exists
must vanish onJ. Therefore, if no discontinuities of derivatives enter into the
determination of properties of�, the problem of estimating the endpoints ofJ is
essentially parametric. Provided there are no other points where� vanishes, then
it may be shown that under appropriate regularity conditions, an empirical rule can
get withinO(n−1) of errA0(f, g|I).

The setting where Bayes risk equals zero is sometimes addressed in the
context of machine learning [see, e.g., Ehrenfeucht, Haussler, Kearns and Valiant
(1989)]. Excluding the uninteresting degenerate case in whichp(1 − p) = 0, and
pathological cases where the support off starts exactly at a point where that ofg

ends (or vice versa), this setting entails� vanishing on a plate, as discussed in
the previous paragraph. Therefore, its main implications are those that we have
discussed previously.

In many circumstances the discussion of classification given following Theo-
rem 2.1 applies in a general, global sense, to an empirical algorithmÂ applied to
any new datumx ∈ R, rather than only to the algorithmA1 restricted toI. Details
will be given in the next section.
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3. Classification in the tails.

3.1. Kernel-based classifiers. We shall assume that the supports of both
f andg are intervals, that neither density vanishes in the interior of its support, and
that a classification rule is sought in the upper tail. In this instance our algorithm
will be based on the assumption that, sufficiently far to the right, the tail off

exceeds that ofg, or vice versa. Formally, we ask that eitherf (x) > g(x) for all
x ∈ (x0, xsupp), or g(x) > f (x) for all x ∈ (x0, xsupp), wherex0 is strictly less than
the right-hand end,xsupp, of the support off or g, respectively; and we seek a
means of classifying new datax > x0. Of course,xsuppmay be infinite.

If x > x0 andf̂ (x) = ĝ(x) = 0, letx̂ denote the infimum of values ofy ≤ x such
that f̂ (z) = ĝ(z) = 0 for all z ∈ [y, x]. Our algorithm, to which we refer below
asAR, where the subscript indicates the right-hand tail, consists of classifyingx as
coming fromf or g, according, asf̂ (x̂−) > 0 or ĝ(x̂−) > 0. [With probability 1,
exactly one off̂ (x̂−) andĝ(x̂−) will be nonzero.]

3.2. Main results. Theorem 3.1 below shows that the suboptimality level
discussed in Section 2, that is,O(n−(1−ρ)) whereρ = 1/5 or 1/9, is preserved
if the upper tail weights off and g are sufficiently different. Theorem 3.2
demonstrates by example that if the tail weights are too close, then the level of
suboptimality can be of strictly larger order thann−(1−ρ).

Next we give regularity conditions for Theorem 3.1. WritingF andG for the
distributions corresponding to densitiesf andg, respectively, we ask that:

K is a bounded, symmetric, compactly supported and Hölder continuous
(3.1)

probability density;

for j = 1 and 2,hj = hj (n) � n−ρ asn → ∞, where 0< ρ < 1;(3.2)

f andg are continuous, and strictly decreasing in their upper tails;(3.3)

for a constantA1 > 0 and all sufficiently largex, A1f (x) > f (x − x−1);(3.4)

for eachε > 0 and all sufficiently largex, εf (x) ≥ g(x − x−1);(3.5)

for A2 > 0, for a >
2−ρ
1−ρ

and all sufficiently largex, 1− G(x) ≤ A2f (x)a;(3.6)

x(2−ρ)/ρ{1− G(x)} → 0 asx → ∞.(3.7)

Assumption (3.1) is satisfied by compactly supported kernels commonly used in
practice, and, in particular, by the Epanechnikov, biweight and triweight kernels;
condition (3.2) is satisfied by the optimal bandwidths discussed in Section 2;
(3.3) asks that the tails off andg be smooth and eventually decreasing; (3.4) asks
that the tails off not decrease too rapidly, and is satisfied by the majority of
distributions that have infinite tails to the right; (3.5) asks thatf eventually
dominateg; (3.6) asserts that this domination is sufficiently great; and (3.7) holds
if the lighter-tailed distributionG has finite moment of order(2− ρ)/ρ.
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THEOREM 3.1. If (3.1)–(3.7)hold, then for some x0 > 0,

P { for each x > x0, one of the following two properties

holds: (a)pf̂ (x) > (1− p)ĝ(x), or (b) f̂ (x) = ĝ(x) = 0,

ĝ(y) = 0 for all y > x, f̂ (x̂−) > 0 and ĝ(x̂−) = 0}
= 1− o{(nh)−1}

(3.8)

as n → ∞.

Next we investigate an instance wheref andg both have Pareto-type tails, but
the tail weights are sufficiently similar for the algorithmAR to have difficulty
distinguishing between them. Specifically, assume that

f (x) ∼ ax−α and g(x) ∼ bx−β asx → ∞,
(3.9)

wherea, b > 0 and 1< α < β < α + 1< ∞.

Let A2 = A1 ∪ AR denote the algorithm constructed by usingA1 to classifyx if
not both off̂ (x) andĝ(x) vanish, and usingAR otherwise.

THEOREM 3.2. If (3.1), (3.2)and (3.9)hold, then for all sufficiently large x0,

nh

∫ ∞
x0

P(x is classified by A2 as coming from g)f (x) dx → ∞(3.10)

as n → ∞.

3.3. Implications of Theorems 3.1 and 3.2. An immediate consequence of
Theorem 3.1 is that if (3.1)–(3.7) hold, then the probability that, uniformly in
new datax on [x0,∞), A2 is equivalent to classifying in the optimal way
using A0, equals 1− o{(nh)−1}. Therefore, taking the classification interval to
beI = [x0,∞), we deduce that

errA2(f, g|I) − errA0(f, g|I) = o{(nh)−1}(3.11)

asn → ∞. The left-hand side of (3.11) is of course nonnegative; it represents the
Bayes risk for an empirical classification rule, minus the risk for the optimal rule.

There is, of course, a version ofAR for the left-hand tail; call itAL. Let Â
denote the algorithm that classifiesx using A1 if f̂ (x) and ĝ(x) do not both
vanish, or usingAR if f̂ (x) = ĝ(x) = 0 andx lies to the right of the median
of X ∪ Y, or usingAL otherwise. (Our choice of the median is arbitrary.) Assume
f andg are continuous on the real line, that the supports off andg are intervals,
that neither density vanishes at any point in the interior of its support, that the
conditions of Theorem 2.1 hold on any compact intervalI that is interior to the
intersection of the supports, that the conditions of Theorem 3.1 (possibly with
f andg interchanged) hold to the right, and that the analogous conditions hold to
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the left. Then in either tail, eitherf or g dominates the other, and so there can be
only a finite number of points (ν, say) at which the graphs ofpf and (1 − p)g

cross.
In these circumstances we may deduce from Theorems 2.1 and 3.1 that

the expansions of classification error described in Theorem 2.1 hold for the
algorithmÂ applied to classification on the whole real lineR:

errÂ(f, g|R) − errA0(f, g|R)

= 1
2

ν∑
j=1

|�′(yj )|−1E{pf̂ (yj ) − (1− p)ĝ(yj )}2 + o{(nh)−1 + h4}.(3.12)

The remainder term here can be sharpened too{(nh)−1 + h8} if the conditions of
the second part of Theorem 2.1 apply, in particular, ifh1 andh2 satisfy (2.9).

In view of these results, the discussion of optimality given following Theo-
rem 2.1 applies to the present general, global setting, whereÂ is used to classify
any real-valued datumx. The asymptotically optimal bandwidths are either
h0

j = Hjn
−1/5 orh0

j = Hjn
−1/9, where(H1,H2) minimizes either (2.14) or (2.15),

respectively, andH2 = R1/2H1 in the latter case.
It may be proved from (3.9) that ifx0 is sufficiently large, then (3.11) fails.

Therefore, if the bandwidthsh1 andh2 are chosen so as to minimize the inherent
additional classification error in the body of the distribution, relative to the optimal
algorithmA0, this performance will not be reflected when usingA2 to classify
data in the tails. If (3.9) holds, then the additional error introduced by the difficulty
of classifying data in the tails is so large as to dominate the relatively low levels of
error (in comparison withA0) experienced elsewhere.

The rate of divergence in (3.10) can be arbitrarily slow, in the sense that for
any givenε > 0 there exist densitiesf andg satisfying (3.9) and for which the
left-hand side of (3.10) diverges to infinity more slowly thannε, asn → ∞.

Work of Chanda and Ruymgaart (1989) provides some further detail related to
Theorem 3.2. Addressing the case wheref andg differ only in location, and the
density tails decrease likex−γ asx → ∞, Chanda and Ruymgaart show that the
difference between the error of the empirical classifier and its asymptotic limit is
of size (nh)−γ /(γ+2). Moreover, if the density tails decrease likee−xγ

, then the
rateO(n−4/5) is possible ifγ > 1, although a slower rate occurs ifγ ≤ 1.

4. Empirical choice of bandwidth.

4.1. Discussion of methods. We could compute bandwidths by constructing
empirical approximations to the functions appearing in (2.14) and (2.15), finding
the minima of empirical forms of those expressions and substituting the resulting
values into formulae for theoretically optimal bandwidths. However, this technique
is awkward to use, since it requires explicitly working out how many times the
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graphs ofpf and (1 − p)g cross and where the crossings take place. This calls
for technology similar to bump hunting methods. The relative complexity of that
approach motivates alternative, more implicit techniques for bandwidth selection.
One possibility is cross-validation, which at first sight seems very attractive.

A cross-validation method for choosing bandwidth is as follows. Letf̂−i and
ĝ−i denote the respective versions off̂ and ĝ, defined at (2.2), that are obtained
through computing the latter estimators from the leave-one-out datasetsXi =
X\{Xi} andYi = Y\{Yi}, respectively. (We continue to use respective bandwidths
h1 andh2.) Put�̂f,−i = pf̂−i − (1− p)ĝ, �̂g,−i = pf̂ − (1− p)ĝ−i and

ẽrrA1(h1, h2) = p

m

m∑
i=1

I {�̂f,−i (Xi) < 0,Xi ∈ I}

+ 1− p

n

n∑
i=1

I {�̂g,−i(Yi) > 0, Yi ∈ I}.
(4.1)

One might choose(h1, h2) = (ĥ1, ĥ2) to minimize ẽrrA1(h1, h2). The latter
may be viewed as an empirical approximation to errA1(f, g|I). However, this
approach performs poorly in both theory and practice, and, in particular, does not
accurately estimate, in the sense of relative consistency, the value of(h1, h2) that
minimizes errA1(f, g|I). See Section 7 for details.

A second, more effective approach, which we shall consider in detail, is based
on using the bootstrap to estimate errA1(f, g|I) and, thereby, to select the optimal
bandwidths. Specifically, let̃f andg̃ be the versions of̂f andĝ, defined at (2.2),
that arise if we use respective bandwidthsh3 and h4 (instead ofh1 and h2).
Conditional onX (or onY), drawm dataX∗ = {X∗

1, . . . ,X∗
m} independently and

uniformly from the distribution with densitỹf (or, resp.,n dataY∗ = {Y ∗
1 , . . . , Y ∗

n }
independently and uniformly from the distribution with densityg̃), and let

f̂ ∗(x) = 1

mh1

m∑
j=1

K

(x − X∗
j

h1

)
, ĝ∗(x) = 1

nh2

n∑
j=1

K

(x − Y ∗
j

h2

)
.

Put�̂∗(x) = pf̂ ∗(x) − (1− p)ĝ∗(x) and

êrrA1(h1, h2) = p

∫
P {�̂∗(x) < 0|X ∪ Y}f̃ (x) dx

+ (1− p)

∫
P {�̂∗(x) > 0|X ∪ Y}g̃(x) dx.

Choose(h1, h2) = (ĥ1, ĥ2) to minimizeêrrA1(h1, h2).
In the two respective cases we need to chooseh3 and h4 so that the “pilot”

density estimatorsf̃ and g̃ are able to consistently estimate second, or fourth,
derivatives off andg. It is known from more conventional applications of curve
estimation that this requiresh3 and h4 to be of strictly larger order thann−1/5
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or n−1/9, respectively. Therefore, we should chooseh3 andh4 to both be of size
n−σ , where in the first regime 0< σ < 1

5 and in the second 0< σ < 1
9. Since taking

0< σ < 1
9 covers both cases, then, for simplicity, we shall make that assumption in

our theoretical results below. For the same reason we shall assume four derivatives
of f andg in the neighborhood of each cross-over point, although in the case of
the first regime only two derivatives are required.

4.2. Main results. We shall assume the following:

f andg are continuously differentiable and are bounded away from zero
on an open interval containingI; � vanishes at justν points,y1, . . . , yν ,

(4.2)
in I, all of them interior points and at each of which�′(yj ) �= 0; andf

andg each have four continuous derivatives in neighborhoods of eachyj ;

eitherν ≥ 1, f ′′(yj )g
′′(yj ) �= 0 for at least onej , and theν equations

pf ′′(yj ) − R(1− p)g′′(yj ) = 0 do not have a simultaneous solution(4.3)
R > 0; orν = 1 andf ′′(yj )g

′′(yj ) > 0, in which case a solution exists;

m/n is bounded away from zero and infinity asn → ∞;(4.4)

K is a compactly supported function with four Hölder continuous deriv-
(4.5)

atives on the real line and satisfying
∫

K = 1;

for j = 3 and 4,hj = hj (n) � n−σ asn → ∞, where 0< σ < 1/15.(4.6)

Condition (4.3) implies that one or other of the two main regimes of behavior of
h0

1 and h0
2 obtains. Ifρ = 1

5 or 1
9 in the two respective cases, then the optimal

bandwidths areh0
j ∼ Hjn

−ρ for j = 1,2, whereH1 andH2 are positive constants.

Given 0< c1 < 1
9 < 1

5 < c2 < 1, let (h1, h2) = (ĥ1, ĥ2) denote the bandwidth
pair that minimizeŝerrA1(h1, h2) over (h1, h2) such thatn−c2 ≤ h1, h2 ≤ n−c1.
The theorem below shows that each empirical bandwidthĥj is asymptotic to its
asymptotically optimal counterparth0

j . In addition, if a sufficiently high-order

kernel is used to estimatẽf andg̃, then an empirical form of (2.9) holds.

THEOREM 4.1. Assume 0 < p < 1 and I is a compact interval, and
that (4.2)–(4.6)hold. Then, for j = 1 and 2, ĥj /h0

j → 1 in probability as n → ∞.

Furthermore, if K is of order r , meaning that
∫

ujK(u)du = 0 for 1 ≤ j ≤ r − 1,
if r > 2/(5σ), if the second part of (4.3) obtains, and if f and g have r + 2
bounded derivatives in a neighborhood of y1, then the following empirical form
of (2.9)holds:

ĥ2

ĥ1
=

{
pf ′′(y1)

(1− p)g′′(y1)

}1/2

+ op(n−2ρ).(4.7)
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5. Multiple or multivariate populations.

5.1. Multiple univariate populations. Suppose there areN distributions,
F1, . . . ,FN say, with respective densitiesf1, . . . , fN and prior probabilities
p1, . . . , pN , where

∑
j pj = 1. Let A denote a general algorithm for classifying

data in a given intervalI. The “ideal” algorithm which minimizes the Bayes risk

errA(f1, . . . , fN |I)

=
N∑

j=1

pj

∫
I
P(x is not classified byA as coming fromfj )fj (x) dx,

is the classification ruleA0 which declaresx to have come fromfj if pjfj (x) =
maxk{pkfk(x)}. (Ties may be broken at random.) Here it is assumed that the prior
probabilities forf1, . . . , fN , restricted toI, arep1, . . . , pN , respectively.

Assume that for each 1≤ j ≤ N , we have access to a sampleXj1, . . . ,Xjnj
of

independent and identically distributed data drawn from distributionFj . Assume
the samples are themselves independent. Construct the density estimator

f̂j (x) = 1

njhj

nj∑
i=1

K

(
x − Xji

hj

)
,

wherehj is a bandwidth. LetA1 denote the empirical algorithm which declaresx

to have come fromfj if and only if pj f̂j = maxk{pkf̂k(x)}. (Breaking ties at
random in this rule has no effect on our asymptotic results, provided maxj pjfj is
bounded away from zero onI.)

Let I denote a compact interval, and assume maxj pjfj is bounded away from
zero in an open interval containingI; that �ij ≡ pifi − pjfj vanishes only at
discrete interior pointsyijk of I, where 1≤ k ≤ νij and�′

ij (yijk) �= 0; that these
points are distinct, in the sense thatyi1j1k1 = yi2j2k2 implies {i1, j1} = {i2, j2} and
k1 = k2; thatn1 → ∞ and each rationj/nk is bounded; that for each 1≤ j ≤ N ,

hj = hj (n1) � n
−1/5
1 as n1 → ∞; and that other conditions, for example, on

the smoothness of eachfj , are analogous to those in Section 2. Putn = n1,
Hj = n1/5hj andrj = nj/n, let κ andκ2 be as in Section 2, and define

T (H1, . . . ,HN)

= κ

4

∑∑
i �=j

νij∑
k=1

|�′(yijk)|−1{(riHi)
−1p2

i fi(yijk)

+ (rjHj )
−1p2

jfj (yijk)}

+ κ2
2

16

∑∑
i �=j

νij∑
k=1

|�′(yijk)|−1{H 2
i pif

′′
i (yijk) − H 2

j pjf
′′
j (yijk)}2.

(5.1)
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Then the following analogues of (2.8) and (2.10) may be derived:

errA1(f1, . . . , fN |I) − errA0(f1, . . . , fN |I)

= 1
4

∑∑
i �=j

νij∑
k=1

|�′(yijk)|−1E{pif̂i(yijk) − pj f̂j (yijk)}2 + o(n−4/5)

= T (H1, . . . ,HN)n−4/5 + o(n−4/5).

(5.2)

5.2. Implications of (5.2). Our assumptions imply that no three graphs of the
functionspifi cross at a single pointy ∈ I, and, indeed, (5.2) fails in such cases.
Although those cases might be considered rare, Fukunaga and Flick (1984) show
that they can arise.

The context directly addressed by (5.2) is that where it is impossible to
chooseH1, . . . ,HN > 0 such that(Hi/Hj )

2 = pjf
′′
j (yijk)/{pif

′′
i (yijk)} for each

triple of indices(i, j, k) such thatpifi andpjfj cross at some pointyijk ∈ I.
For example, this can be becausef ′′

j (yijk)f
′′
i (yijk) < 0 for some(i, j, k), or

because for some pair(i, j) the ratiof ′′
i (yijk)/f

′′
j (yijk) varies withk. Here the

optimal rate of convergence to zero of the difference in Bayes risk isn−4/5,
and its minimal size is obtained by choosinghj = Hjn

−1/5, whereH1, . . . ,HN

minimizesT (H1, . . . ,HN) at (5.1).
Consider next the case where there is only one nonzero value ofνij , and it

equals 1. Here the optimal algorithmA0 reduces to distinguishing between just
two densities,fi andfj say. The empirical algorithmA1 also effectively reduces
to a two-population one, where the convergence rate can be eithern−4/5 or n−8/9.
Since this case has already been discussed in Section 2, then there is no need to
treat it further.

There are, however, nonpathological instances where
∑

i<j νij > 1 and the
convergence raten−8/9, rather thann−4/5, obtains. Consider, for example, the case
where, for 1≤ j ≤ M (andM < N ), the graph ofpjfj crosses that ofpj+1fj+1
at a single point,yj say; and no other crossings of graphs occur withinI. If, at
each crossing, the graphs are all locally concave or all locally convex, then, by
choosingH1, . . . ,HM+1 such that(Hj/Hj+1)

2 = pj+1f
′′
j+1(yj )/{pjf

′′
j (yj )} for

1 ≤ j ≤ M , we ensure that the bias contribution toT (H1, . . . ,HN), that is, the
second term in (5.1), vanishes identically. In this case the faster convergence rate
of n−8/9 can be obtained by choosingh = Hjn

−1/9 throughout. (Choice ofhj

for j > M + 2 is relatively unimportant, since the corresponding densities do not
cross any other density inI. Nevertheless, takinghj = n−1/9 is adequate.) There
are many related examples of this type.

5.3. Multivariate populations. Let f andg be densities ofd-variate distribu-
tionsF andG, respectively, whered ≥ 1. We assume classification is conducted
for new datax coming from a regionR, which here plays the role of the intervalI
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in Section 2. The empirical ruleA1 classifiesx as coming fromF or G, according,
aspf̂ (x) − (1− p)ĝ(x) is positive or negative, where on the present occasion,

f̂ (x) = 1

mhd
1

m∑
i=1

K

(
x − Xi

h1

)
, ĝ(x) = 1

nhd
2

n∑
i=1

K

(
x − Yi

h2

)
,

X = {X1, . . . ,Xm} and Y = {Y1, . . . , Yn} are training datasets drawn fromF
andG, respectively,h1 andh2 are bandwidths, andK is a bounded, spherically
symmetric and compactly supported probability density.

The classification ruleA0 that minimizes Bayes risk amounts to classifyingx

as coming fromF or G according as�(x) > 0 or< 0, where� = pf − (1−p)g.
Let C denote that part of the set{y :�(y) = 0} which lies inR, and writeθ(y) for
the vector of first derivatives of� aty. In place of (2.4) and (2.5), we assume that
f andg have two continuous derivatives, and are bounded away from zero, in an
open set containingR, and the functionθ does not vanish onC. Take eachhj to
be of sizen−1/(d+4). Then it may be proved that

errA1(f, g|R) − errA0(f, g|R)

= 1
2

∫
C

‖θ(y)‖−1E{pf̂ (y) − (1− p)ĝ(y)}2 dy + o
(
n−4/(d+4)).(5.3)

Holmström and Klemelä (1992) report the results of numerical experiments
on kernel-based classification in the multivariate case. They provide no theory,
however.

5.4. Implications of (5.3). Taking hj = Hjn
−1/5, Taylor expansion of the

right-hand side of (5.3) may be shown to give

errA1(f, g|R) − errA0(f, g|R) = B(H1,H2)n
−4/(d+4) + o

(
n−4/(d+4)),

where the constantB(H1,H2) vanishes for either finite or infinite(H1,H2) only if
∇2f/∇2g is constant throughoutC, with ∇2ψ denoting the Laplacian. Therefore,
in virtually all cases there exists an optimal pair(H1,H2) = (H 0

1 ,H 0
2 ) which

minimizesB(H1,H2). Then the optimal bandwidthsh0
j = H 0

j n−1/(d+4) are of size

n−1/(d+4), which is the same size that leads to minimization of mean squared error
of f̂ andĝ as pointwise estimators off andg.

6. Numerical properties. We summarize a simulation study addressing
properties of the empirical bandwidth selector introduced in Section 4. Recall from
Section 2 that there are two main classes of problems, respectively characterized
by the property that the densitiesf andg intersect at a point where the curvatures
have different signs or the same sign. Call these classes 1 and 2; they correspond to
the optimal bandwidth being of sizen−1/5 or n−1/9, respectively. We shall report
results for two examples in each class. Throughout, the distribution with densityf
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was standard normal,p = 1
2 andm = n. In the tails of the distributions, in any

cases of ambiguity we classified using the method suggested in Section 3.
Classification was done on the entire real line, rather than on a compact interval

as suggested in our theory. In the first examples, in each of classes 1 and 2 the
densities cross one another at one point in the tails, in addition to a crossing in the
“middle” of the distribution. However, the tail crossing point is so far out that, for
the sample sizes we used, it has negligible impact on numerical results, and so the
effective value ofν is 1. The actual value ofν is 1 for the second example in class 1.
For the second example in class 2,ν = 2. However, there is strong symmetry in
this case, with the result that theoretical properties are essentially the same as they
would be if ν were 1. Nevertheless, the existence of two crossing points creates
potential hazards for our empirical bandwidth selector, which is why we treated
this example.

In the first example in class 1,g is the N(−1.2,0.62) density, the crossover
occurs aty1 = −0.515, and the curvatures there aref ′′(y1) = −0.255 and
g′′(y1) = 0.281. In the second example in class 1,g is the density for the normal
mixture

1
5N(0,1) + 1

5N
(
1,

(2
3

)2) + 3
5N

(19
12,

(5
9

)2)
,

y1 = 0.707,f ′′(y1) = −0.156 andg′′(y1) = 0.327. In the first example in class 2,
g is the normal N(1,1) density,y1 = 0.5 andf ′′(y1) = g′′(y1) = −0.264. In the
second example in class 2,g is the Cauchy densityg(x) = {π(1 + x2)}−1, there
are two crossover pointsyi = ±1.851, andf ′′(yi) = 0.175 andg′′(yi) = 0.068.
Figure 1 illustrates the densities.

To implement the bootstrap method suggested in Section 4, we used the
triweight kernel, K(x) = (35/32)(1 − x2)3 for |x| ≤ 1, and noted that the
asymptotically optimal bandwidth for estimatingf (r), in terms of minimizing
mean integrated squared error, is

h =
{

(2r + 1)R(K(r))

nµ2(K)2
∫
(f (r+2))2

}1/(2r+5)

,

where R(L) = ∫
L2 and µ2(L) = ∫

u2L(u)du. When constructing estimators
f̃ and g̃ mentioned in Section 4, we tookr = 4 and choseh3, h4 using the
above formula, but (employing a device that might be implemented in practice)
replacedf by the normal density with zero mean and variance estimated from the
training data. In the case of the Cauchy density, however, estimating scale in this
way is inappropriate, and so instead the normalized interquartile range was used:

σ̂IQR = sample interquartile range

−1(0.75) − −1(0.25)
,
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FIG. 1. Densities used in simulation study. In each case the density f (x) = (2π)−1/2 exp(−1
2x2)

is indicated by the dot-dashed line, and the density g by the unbroken line. The densities depicted
in the two panels in the first and second rows correspond to those in the two examples in classes
1 and 2, respectively.

where−1 denotes the standard normal quartile function.
The probabilityP {�̂∗(x) < 0|X ∪ Y} needed to estimatêerrA1(h1, h2) was

approximated using 100 bootstrap iterations. Minimization ofêrrA1(h1, h2) over
(h1, h2) was conducted on a fine grid of bandwidths. We simulated 100 samples
for each of 10 logarithmically equally spaced sample sizes from 20 to 200.

Let (ĥ1, ĥ2) denote the empirical bandwidths obtained in this way. For each
of the four distributions, and forj = 1,2, we plotted− logĥj against logn. The
results are given in Figures 2 and 3, which correspond to class 1 and class 2,
respectively. In each figure, the two rows of panels give plots that correspond
to the first and second density pairs, respectively, in that class; and the first and
second columns of panels show (as black dots) the average values (over the 100
independent samples) of the points(− logĥ1, logn) in the case of the left-hand
panel, or(− logĥ2, logn) for the right-hand panel. In each of the four panels
in each figure, the unbroken line is the conventional least-squares regression
line through these points. The dotted and dashed lines have slopes1

5 and 1
9,
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FIG. 2. Plots for two examples in class 1. The two rows of panels show, respectively, simulation
results for the two pairs of densities in class 1, that is, for the density pairs shown respectively in
the first and second panels (in the first row) of Figure 1. In the j th column of each row the black
dots show average values of (− logĥj , logn), computed as described in Section 6. The unbroken
line is the conventional least-squares regression line through these points, and the dotted and dashed
lines are drawn so that they have respective slopes 1

5 and 1
9, and pass through the center of the

least-squares regression line.

respectively, with intercepts chosen so that each of these lines passes through the
center of the least-squares regression line.

The main point to note from the figures is that in the case of density pairs
from class 1, the slope of the least-squares regression line is very close to1

5
(see Figure 2), while for class 2 it is close to1

9 (see Figure 3). This, of course,
reflects the theoretical results presented in Sections 3 and 4, where we showed that
these particular slopes determine the optimal orders of bandwidth in the respective
classes. The agreement between theory and numerical simulation is somewhat
better in the case of class 1, but note that in the second class the numerical results
clearly reflect the theory even in the Cauchy case.
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FIG. 3. Plots for two examples in class 2. Details are as for Figure 2, except that the two rows of
panels show results for the two pairs of densities in class 2. These density pairs are depicted in the
first and second panels, respectively, in the last row of Figure 1.

7. Reasons for failure of ẽrrA1(h1,h2), at (4.1), to provide effective
minimization of Bayes risk. Failure occurs because the optimal bandwidths,
discussed in Section 2.3, are determined by properties of mean squared error at
isolated points, that is, the points where the graphs ofpf and (1 − p)g cross.
See (2.8). Cross-validation does not accurately estimate mean squared error at a
point, unless one averages over neighboring points in a sufficiently wide interval.
See, for example, the modifications of cross-validation that are necessary when it
is used for local, as distinct from global, bandwidth choice [Hall and Schucany
(1989) and Mielniczuk, Sarda and Vieu (1989)]. The same sort of averaging
is required here, too, and so the use of subsidiary smoothing parameters is
necessary to overcome the failure of cross-validation. That substantially reduces
the attractiveness of the method.

To appreciate these difficulties from a theoretical viewpoint, note that in order
for the criterion defined at (4.1) to perform its function, it must equal errA1(h1, h2),
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plus terms which either do not depend on(h1, h2) or which depend on that quantity
but are of smaller order thanη ≡ (mh1)

−1 + (nh2)
−1 + h4

1 + h4
2. (We shall say

that such terms are of “type T.”) It is not difficult to see that this must be true of
both series on the right-hand side of (4.1); there cannot, in general, be judicious
cancellation between the two quantities. In particular,

S(h1, h2) ≡ 1

m

m∑
i=1

I {�̂f,−i (Xi) < 0,Xi ∈ I}

must equals(h1, h2) ≡ ∫
I P {pf̂ < (1 − p)ĝ}f , plus terms of type T; call this

property P1. We shall outline a theoretical argument showing that, in general, P1
fails to hold.

For simplicity, let us takep = 1
2, andh1 andh2 both to lie within the interval

H = [n−1/5C1, n
−1/5C2], where 0< C1 < 1 < C2 < ∞. We assume, too, that

m/n has a finite, nonzero limit, and thatf andg cross at a unique pointy in I, at
which�′(y) �= 0 and the curvatures off andg have different signs. The argument
we shall employ to prove that P1 fails in this case can be used to show that it fails
more generally.

Put

S0 = m−1
∑
i

I {�(Xi) < 0,Xi ∈ I} and U(h1, h2) = S(h1, h2) − S0.

It is straightforward to show thatE{S(h1, h2)} = s(h1, h2) + o(η), and, of course,
S0 does not depend onh1 andh2. We shall prove that var{U(h1, h2)} is asymptotic
to n−1 multiplied by a bounded function which depends nondegenerately on
(v,w) = (n1/5h1, n

1/5h2). Call this property P2, and note thatη2 = o(n−1)

uniformly in h1, h2 ∈ H . It may also be proved thatU(h1, h2) is asymptotically
normally distributed, and converges weakly to a Gaussian process indexed by
(v,w) ∈ [C1,C2]. These results imply that P1 fails.

Note that var{U(h1, h2)}, being the variance of a sum, can be expanded as a
sum of diagonal terms, plus a double series in off-diagonal terms. It is relatively
straightforward to show that the sum of diagonal terms equalso(η). Therefore,
it suffices to show that P2 applies to the double series in off-diagonal terms
contributing to the variance. That quantity equals(1− m−1)Q, where

Q = cov[I {�̂f,−1(X1),X1 ∈ I} − I {�(X1) < 0,X1 ∈ I},
I {�̂f,−2(X2),X2 ∈ I} − I {�(X2) < 0,X2 ∈ I}],

and so it is adequate to prove that P2 applies toQ.
Define ξ = {(n − 1)h1}−1, f̄ (x) = ξ

∑
i �=1,2 K{(x − Xi)/h1}, δ1(x1, x2) =

ξK{(x1 − x2)/h1}, δ2(u) = ξK(u), pj = P {f̄ (xj ) − ĝ(xj ) + δ1(x1, x2) < 0},
qj = P {f̂−j (xj ) − ĝ(xj ) < 0} andrj = I {�(xj ) < 0}. Let K(x1) denote the set
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of u such thatx1 − hu ∈ I, and puth = h1. In this notation,

Q =
∫
I

∫
I
{(p1 − r1)(p2 − r2) − (q1 − r1)(q2 − r2)}f (x1)f (x2) dx1 dx2

= h

∫
I

∫
K(x1)

{(a1 − a2)(b1 − b2)

− (a1 − a3)(b1 − b3)}f (x1)f (x1 − hu)dx1 du,

wherea1 = P {f̄ (x1) − ĝ(x1) < 0} − r1, a2 = P {−δ2(u) < f̄ (x1) − ĝ(x1) < 0},
a3 = P {−δ1(x1,X2) < f̄ (x1) − ĝ(x1) < 0},
b1 = P {f̄ (x1 − hu) − ĝ(x1 − hu) < 0} − I {�(x1 − hu) < 0},
b2 = P {−δ2(u) < f̄ (x1 − hu) − ĝ(x1 − hu) < 0},
b3 = P {−δ1(x1 − hu,X2) < f̄ (x1 − hu) − ĝ(x1 − hu) < 0}.

It may thus be shown that

Q ∼ h

∫
I

∫
K(x1)

{(a3 − a2)b1 + (b3 − b2)a1}f (x1)f (x1 − hu)dx1 du

∼ 2h

∫
I

∫
K(x1)

(b3 − b2)a1f (x1)
2 dx1 du

∼ −2h

∫
I

∫
K(x1)

a1b2f (x1)
2 dx1 du.

In the last-written integral, change variable fromx1 to z, wherex1 = y + h2z.
Then, for arbitrarily smallε > 0, Q is asymptotic to

−h3f (y)2
∫
|u|≤nε

∫
|z|≤nε

P {−δ2(u) < f̄ (y + h2z − hu)

− ĝ(y + h2z − hu) < 0}
× [I {�(y + h2z) > 0}

− P {f̄ (y + h2z) − ĝ(y + h2z) > 0}]dudz.

(7.1)

The probability that occurs as a factor in the integral at (7.1) is asymptotic to
(mh)−1/2 multiplied by a nondegenerate function of(v,w) = (n1/5h1, n

1/5h2).
The factor within square brackets in (7.1) is asymptotic to another such function.
Hence,Q is asymptotic toh3/(mh)1/2 � n−1, multiplied by a function of(v,w),
as had to be proved.
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KRZYŻAK , A. (1991). On exponential bounds on the Bayes risk of the nonparametric classification
rules. In Nonparametric Functional Estimation and Related Topics (G. Roussas, ed.)
347–360. Kluwer, Dordrecht.

LAPKO, A. V. (1993).Nonparametric Classification Methods and Their Application. VO Nauka,
Novosibirsk. (In Russian.)

L IN, C.-T. (2001). Nonparametric classification on two univariate distributions.Comm. Statist.
Theory Methods 30 319–330.

LUGOSI, G. and NOBEL, A. (1996). Consistency of data-driven histogram methods for density
estimation and classification.Ann. Statist. 24 687–706.

LUGOSI, G. and PAWLAK , M. (1994). On the posterior-probability estimate of the error rate of
nonparametric classification rules.IEEE Trans. Inform. Theory 40 475–481.

MAMMEN , E. and TSYBAKOV, A. B. (1999). Smooth discrimination analysis.Ann. Statist. 27
1808–1829.

MARRON, J. S. (1983). Optimal rates on convergence to Bayes risk in nonparametric discrimination.
Ann. Statist. 11 1142–1155.

MIELNICZUK , J., SARDA, P. and VIEU, P. (1989). Local data-driven bandwidth choice for density
estimation.J. Statist. Plann. Inference 23 53–69.

PAWLAK , M. (1993). Kernel classification rules from missing data.IEEE Trans. Inform. Theory 39
979–988.

PSALTIS, D., SNAPP, R. R. and VENKATESH, S. S. (1994). On the finite sample performance of
the nearest neighbor classifier.IEEE Trans. Inform. Theory 40 820–837.

SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. and LEE, W. S. (1998). Boosting the margin: A new
explanation for the effectiveness of voting methods.Ann. Statist. 26 1651–1686.

STEELE, B. M. and PATTERSON, D. A. (2000). Ideal bootstrap estimation of expected prediction er-
ror for k-nearest neighbor classifiers: Applications for classification and error assessment.
Statist. Comput. 10 349–355.

STOLLER, D. S. (1954). Univariate two-population distribution-free discrimination.J. Amer. Statist.
Assoc. 49 770–777.

STONE, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates.
Ann. Statist. 12 1285–1297.

YANG, Y. H. (1999a). Minimax nonparametric classification. I. Rates of convergence.IEEE Trans.
Inform. Theory 45 2271–2284.

YANG, Y. H. (1999b). Minimax nonparametric classification. II. Model selection for adaptation.
IEEE Trans. Inform. Theory 45 2285–2292.

CENTRE FORMATHEMATICS

AND ITS APPLICATIONS

AUSTRALIAN NATIONAL UNIVERSITY

CANBERRA, ACT 0200
AUSTRALIA

E-MAIL : halpstat@pretty.anu.edu.au

DEPARTMENT OFSTATISTICS

HANKUK UNIVERSITY

OF FOREIGN STUDIES

MOHYUN, YONGIN 449-791
KOREA

E-MAIL : khkang@hufs.ac.kr


